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ABSTRACT People usually spend several hours per day inside buildings, and they require great amounts
of energy and resources to operate. Although there are numerous studies about smart buildings, there is
still a need for new intelligent techniques for efficient smart building management. This paper proposes
the use of Wi-Fi network association information as a basis for the design of intelligent systems for smart
buildings. We propose a unified experimental methodology to evaluate machine learning (ML) models on
their capacity to accurately predict Wi-Fi access point demand for energy-efficient smart buildings. The
evaluation involves the use of multiple classification and regression models using a variety of configurations
and algorithms.We conducted an experimental analysis using our proposedmethodology to determine which
ML models provide the best performance results using data collected from a large scale Wi-Fi network
located at Fluminense Federal University (UFF) over a period of 6 months. The proposed methodology
enables the user to evaluate and to create ML models for energy efficient smart building management
systems.We achieved 86.69% accuracy for occupancy prediction using classification techniques andRMSPE
(Root Mean Squared Percentage Error) of 0.29 for occupancy count prediction using regression techniques.

INDEX TERMS Access point occupancy prediction, energy saving, machine learning, smart buildings,
Wi-Fi networks.

NOMENCLATURE
S Dataset
D Fixed and unknown distribution
xi Feature vector of the ith instance
xMi Value of the Mth feature of the feature vector of

the ith instance
Yi Set of labels associated with the ith instance
L Set of possible label values
lq qth label in the label set
|L| Label cardinality
t Set of time slots
tj jth time slot in the time slot set
tmax Maximum time slot value
Y
tj
i Label value in the jth time slot of the ith instance
Stj Training set of the jth time slot
S ′tj Test set of the jth time slot
Atj Accuracy of time slot tj
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TPitj True positive value of the jth time slot of the
ith instance

FPitj False positive value of the jth time slot of the
ith instance

TNitj True negative value of the jth time slot of the
ith instance

FNitj False negative value of the jth time slot of the
ith instance

Ptj Precision of time slot tj
Rtj Recall of time slot tj
F1tj F1-score of time slot tj
M Set of metrics used
RMSPEtj Root Mean Squared Percentage Error of time

slot tj
RMSEtj Root Mean Square Error of time slot tj
MAPEtj Mean Absolute Percentage Error of time

slot tj
Pext_on Access point external power when the wire-

less network interface is switched on
Pext_off Access point external power when the wire-

less network interface is switched off
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ton Time that the access points stayed with their wire-
less interface switched on

toff Time that the access points stayed with their wire-
less interface switched off

I. INTRODUCTION
Buildings play an important role in our lives. People usually
spend in average 20 hours per day inside buildings [1]. Also,
the number of inhabitants in urban areas is quickly increas-
ing [2]. Since buildings are heavily occupied, they require
great amounts of energy and resources to operate. As a con-
sequence, there are numerous studies about smart buildings
[3]–[5], specially on the creation of low cost, efficient smart
building management systems.

The key concept behind smart building management sys-
tems is the preemptive control of building infrastructure in
order to save resources such as lighting, Heating, Ventilat-
ing and Air Conditioning (HVAC), elevators and even net-
work infrastructure [3], [5], [6]. Some building management
systems do not require precise occupancy information to be
functional and capable of saving energy, especially HVAC
systems, by using fixed building control schedules [7].
Several studies have demonstrated that occupancy informa-
tion could help to reduce energy consumption in buildings,
specially in non-residential buildings [3], [8], which operate
under more predictable schedules [3].

Wi-Fi networks can be used to conduct occupancy detec-
tion or occupancy counting for buildings. The ubiquity
of large-scale Wi-Fi networks on non-residential buildings
turns them into an excellent source of information with no
additional cost [3], [4], [9]. There are several studies that
use Wi-Fi infrastructure and machine learning techniques
to create prediction models for smart building manage-
ment. Some of them collect information on the building
areas occupancy history to predict if they are occupied or
not (occupancy detection) [3], [5], [8], [10]. Others use
Wi-Fi information to predict the occupancy count of some
building areas [1], [4], [6], [9]. In this scenario, several
studies use Wi-Fi infrastructure combined with machine
learning methods to predict occupancy of building areas,
floors and rooms [1], [3]–[5], [8], [10], [11]. They do not
necessarily use the association history information from the
Wi-Fi network to build their dataset and create prediction
systems, but rather other information such as channel uti-
lization or bandwidth [1], [3]–[5], [8], [10]–[13]. Those
studies used single-label or multi-label machine learning
classification models and artificial neural networks (ANNs)
to address the occupancy detection problem using Wi-Fi
association history and developed mechanisms that decide
whether an AP should be turned on or off [1], [6], [9],
[12], [14]–[16]. There are others that use Wi-Fi associa-
tion data to create single-label machine learning regression
models to estimate the occupancy count that can also be
used on Wi-Fi AP energy saving mechanisms [3], [17].
However, those models are mostly used to develop HVAC
scheduling systems [5], [10], [11], [18]. On the other hand,

none of them has used multi-label regression methods for
occupancy count or compared and evaluated single-label and
the multi-label methods to classification models to determine
which would have greater accuracy on occupancy detection.
Thus, we fill this gap with our work.

According to Cui et al [19], energy consumption in a
Wi-Fi network is considerable. University wireless networks
display a bimodal periodic behavior with daily and weekly
cycles, and Wi-Fi Access Points (APs) may stay unused for
extensive periods of time [6], [20], [21]. These long idle
periods represent a considerable energy waste that presents
an excellent optimization opportunity. That scenario allows
the use of machine learning prediction models capable of
delivering occupancy demand predictions for network APs
throughout the day [6]. The Wi-Fi network controller can
switch off the network interface of unused APs during idle
time slots based on those predictions. Some wireless net-
work controllers have limited CPU power making it unfea-
sible to collect and predict occupancy in real time, therefore
requiring these systems tomake predictions based exclusively
on past information. But even such networks could benefit
from intelligent systems and few to no adjustments would be
required. Those systems can aid bothwireless network energy
savings and also other building systems such as elevator
scheduling. Therefore our scenario requires an analysis on
how machine learning algorithms are capable of looking at
the future based on previous information and giving accurate
predictions about the Wi-Fi network demand in both occu-
pancy detection and count methods. Such mechanism would
use the presence and number of users to create a final demand
prediction that could be used to group neighbor APs, and
choose which APs should be active to cope with the actual
network demand.

The main contribution of this paper is the proposal of a
unified experimental methodology based on machine learn-
ing to evaluate classification and regression models about
their capacity to accurately predict access point demands for
energy-efficient smart buildings. Our proposed experimen-
tal methodology considers several machine learning algo-
rithms and methods for constructing distinct classification
and regressionmodels usingmultiple input and output config-
urations. We did an experimental analysis using our unified
methodology to determine which models provide the best
results or are themost suitable for an energy-efficient wireless
network management system.

In order to conduct our experimental analysis, we built a
dataset using real user data collected from a subset of the
APs of the Fluminense Federal University (UFF) wireless
network located in a specific building of the Engineering
campus, which has 5 floors of classrooms, over a period
of 6 months, from April to September 2018. We used both
single-lable machine learning algorithms and multi-label
machine learning methods (Binary Relevance (BR) and
Classifier/Regressor Chain (CC/RC)). We built multiple
models for various output modeling, i.e., individual and col-
lective APs prediction; single and multi-label models for
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TABLE 1. Related work comparison.

predicting occupancy in multiple time slots; and multiple
features for input configurations. We evaluated these clas-
sification and regression models based on many classifi-
cation and regression metrics using our dataset. We show
how our proposed unified methodology can help to select
prediction models using machine learning for occupancy pre-
diction based on performance metrics evaluation for distinct
scenarios.

This paper is organized as follows: Section II discusses
related work. Section III presents the multi-label classifi-
cation and regression methods and performance metrics.
Section IV presents UFF’s Wi-Fi network characteristics,
the data collection process and the data analysis. Section V
explains our proposed methodology. Section VI presents our
experimental analysis. Section VII discusses the results based
on distinct usage scenarios. Finally, Section VIII presents
conclusions and future work.

II. RELATED WORK
The information collected fromWi-Fi networks, used to build
a dataset and create a prediction system, is not always the
same, as can be observed in [1], [3]–[5], [8], [10]–[13],
[22]–[24]. However, the key concept behind those studies is
collecting data about the Wi-Fi network to create a detection
or counting system usingmachine learning algorithms. Those
decision support systems provide information for an energy
saving management mechanism that controls building infras-
tructure based on its demand, such as theWi-Fi network itself
or HVAC systems.

Both classifier and regression model are used on Wi-Fi
Resource On Demand (ROD) management systems. Those
ROD systems are capable of controlling the energy state of
Access Points (APs) and turn off the unnecessary APs during
day periods based on the predicted occupation [15], [16],
[22], [25]. Some studies used classification models to address

the Wi-Fi occupancy detection problem and developed ROD
mechanisms [3], [6], [12]. Some other studies use single-label
machine learning classification methods and ANNs using
Wi-Fi data to control building lights [1], [5]. The work pre-
sented in [9] used algorithm adaptation multi-label methods
to deal with the classification problem for HVAC systems.
Regression models using Wi-Fi data to give an estimated
users count are mostly used in HVAC scheduling systems
[10], [11], [18], but some studies have also used regression
models to develop ROD strategy mechanisms [23], [24].

Table 1 compares related work about how they build occu-
pancy prediction models. We can see in the table that most
of the occupancy detection studies use single-label classifiers
and that none of the occupancy count studies use multi-label
regressors, but only single-label ones. Also, those studies
did not compare and evaluate single-label and multi-label
methods to determine which would give the best predictions,
as our work does. It is worth mentioning that while the study
of Vallero et al. [24] use and compare both individual and
collective models, it does not compare them using the same
machine learning algorithms, but it rather compares collective
and individual models using several machine learning algo-
rithms. Moreover, Table 1 shows that there was no consensus
on whether to use collective or individual models to give
predictions and that no other study compares them, as our
work does.

Finally, there are also some studies where pieces of infor-
mation related to weather and season of the year were added
to the occupancy information, in order to help on decision
support systems for smart buildings [7], [9], [18], [26]. None
of these studies have developed a methodology where the
significance of this information is evaluated though.

Our work presents a unified experimental methodology
to evaluate classification models used for occupancy detec-
tion and regression models used for occupancy count where
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several machine learning methods, input configurations,
types of model construction and machine learning algorithms
are assessed. The main goal of the assessment is to determine
which of these parameter combinations is the most suitable
and precise to give occupancy predictions. Our methodology
evaluates and compares multi-label and single-label methods
using several machine learning algorithms, collective and
individual model construction schemes and the significance
of input parameters. Another major contribution of our exper-
imental methodology and analysis is that it does not require
real-time data acquisition for forecasts.

III. MULTI-LABEL AND SINGLE-LABEL LEARNING
METHODS
In a general supervised learning scenario, a dataset S =
{(x1,Y1), . . . , (xN ,YN )} is given to the learning method,
with fixed and unknown distribution D. Each instance xi
is a vector of the form xi = (x1i , . . . , x

M
i ). Each value

(x1i , . . . , x
M
i ) is relative to each feature (X1, . . . ,XM ). Y is

a special feature called class. Yi, i = 1, . . . ,N , represents
a set of labels associated to each instance xi. If all sets
Yi, i = 1, . . . ,N , have only one value, the problem is called
single-label. So, in single-label problems, machine learning
algorithms have only one possible output prediction. How-
ever, some machine learning problems cannot be treated as
a single-label problem [27]. There are cases, such as movie
classification, where a movie can be classified as action and
fiction simultaneously [28]. Multi-label machine learning
algorithms and methods are those capable of dealing with
more than one exclusive output. In other words, if the sets Yi
contain one or more values, the problem is called multi-label.
In a multi-label problem, a set L = {l1, . . . , lq} is given, such
that all Yi ∈ L.

There aremany distinct methods to tacklemulti-label prob-
lems. Problem transformation is the simplest and the most
often used, converting the multi-label problem with L labels
into L single-label problems, i.e., each label lq ∈ L is turned
into a feature, composing a set of features lq, q = 1, . . . ,Q.
The cardinality of L is denoted by |L|. Thus, each feature lq
is a class associated with the set of instances xi to be given to
a single-label classification algorithm [29]. In our scenario,
for modeling occupancy prediction as a multi-label problem,
L represents the time slots for predicting occupancy during
a day. For instance, considering a set of time slots t =
{t1, .., tmax}, if each time slot has 10 min, then tmax = 144
and |L| = 144. Therefore, to each instance xi and label (or
time slot) lq, we can associate a value Y

tj
i that represents:

(i) a value of the set {0, 1}, indicating absence or presence
of people in an AP for time slot tj, defining a classification
problem; or (ii) the number of people associated to an AP for
time slot tj, defining a regression problem.
Classifier or Regressor Chain (CC or RC) methods can be

used, as they benefit from label correlations. It is expected
that CC or RC achieve more accurate results than Binary
Relevance (BR) when there are dependencies among
labels [29]. Like BR, CC or RC also build a unique model

for each label, but the models are sorted in a chain order.
Each model input is composed by the domain features and
the labels that precede the label being predicted by the model,
forming a chain structure.

Artificial Neural Network (ANN) models have proven to
be successful in a number of prediction applications [26].
According to Gardner andDorling [30], aMultiLayer Percep-
tron (MLP) is an ANN where the neurons are interconnected
and grouped into layers. Neuron connections are weighted
and their output signal is an activation function of the sum of
its weighted inputs [30]. MLP allows a single ANN to have a
single or multiple output targets easily turning the MLP into
a multi-label prediction model.

Several metrics can be used for evaluating the classifica-
tion results. In this work, we use specific label-based micro
averaged metrics [28] for both single-label and multi-label
models. So, we evaluate occupancy predictions for each time
slot and then average those results to get an overall view.
Considering a training set Stj = {(x1,Y1

tj ), . . . , (xN ,YN tj )}
collected in an interval of N days; a test set S ′tj =
{(x′1,Y

′

1
tj ), . . . , (x′N ′ ,Y

′

N ′
tj )} collected in an interval of N ′

days after N days; time slots in a day tj ∈ t (if each time slot
has 10 min then tmax = 144); and h(x, tj) a model constructed
using S labeled using time stamp tj, tj ∈ t , and to be evaluated
with S ′ also labeled using time stamp tj, tj ∈t , we can define
time slot accuracy Atj for each time slot tj ∈ t as shown in
Eq. 1, which calculates the accuracy of correctly predicting
presence or absence detection in each time slot in a day,
averaged by the number of N ′ days.

Atj =
1
N ′

N ′∑
i=1

h(x, tj) = Y ′i
tj , tj ∈ t (1)

Considering the true positive value TPitj of an instance i
for a time slot tj as 1 if h(x, tj) = Y ′i

tj and h(x, tj) = 1,
or 0 otherwise; the false positive value FPitj of an instance i
for a time slot tj as 1 if h(x, tj) 6= Y ′i

tj and h(x, tj) = 1,
or 0 otherwise; true negative value TNitj of a instance i for
a time slot tj as 1 if h(x, tj) = Y ′i

tj and h(x, tj) = 0,
or 0 otherwise; and the false negative value FNitj of a instance
i for a time slot tj as 1 if h(x, tj) 6= Y ′i

tj and h(x, tj) = 0,
or 0 otherwise, we can define Precision Ptj , Recall Rtj and
F1-score F1tj metrics. Those metrics are calculated for each
time slot tj and defined respectively by Eqs. 2, 3 and 4.

Ptj =

∑N ′
i=1 TP

tj
i∑N ′

i=1 TP
tj
i + FP

tj
i

, tj ∈ t (2)

Rtj =

∑N ′
i=1 TP

tj
i∑N ′

i=1 TP
tj
i + FN

tj
i

, tj ∈ t (3)

F1tj =
2× Ptj × Rtj
Ptj + Rtj

, tj ∈ t (4)

We also calculate an overall metric for each of these met-
rics (Eq. 5), which is the mean of the corresponding metric
considering all the set t of time slots. This allows an overview
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of h prediction performance for the classification problem.
Thus, M in Eq. 5 can be either A, P, R or F1 metric.

M =
1
tmax

tmax∑
j=1

Mtj (5)

Several metrics can be used for evaluating regressors.
Consider the same definitions described before, except that
Y ′i′

tj , i′ = 1, . . . ,N ′ now represents the number of people
associated to an AP in a time slot tj. So, we can use RMSEtj
(Root Mean Square Error), RMSPEtj (Root Mean Squared
Percentage Error) and MAPEtj (Mean Absolute Percentage
Error) metrics, defined respectively by Eqs. 6, 7 and 8, calcu-
lated for each time slot tj, where Y ′tj =

1
N ′

∑N ′
i′=1 Y

′

i′
tj .

RMSEtj =
N ′∑
i=1

(Y ′i
tj
− h(x ′i , tj))

2 (6)

RMSPEtj =

∑N ′
i=1(Y

′
i
tj
− h(x ′i , tj))

2∑N ′
i=1(Y

′
i
tj
− Y ′tj )

2
(7)

MAPEtj =

∑N ′
i=1 |Y

′
i
tj
− h(x ′i , tj)|∑N ′

i=1 |Y
′
i
tj
− Y ′tj |

2
(8)

RMSE (Eq. 9) is an overall metric, calculated by the mean
of RMSEtj using the entire set t . The overall metric forMAPE
or RMSPE can also be calculated by Eq. 5, where M can be
MAPE or RMSPE .

RMSE =
N ′∑
i=1

tmax∑
j=1

(Y ′i
tj
− h(x ′i , tj))

2 (9)

IV. UFF’s WI-FI NETWORK DATA COLLECTION AND
ANALYSIS
UFF’s Wi-Fi network is based on the SCIFI system [31].
The SCIFI system is composed of a smart management and
monitoring central controller unit, called SCIFI controller,
and low-cost off-the-shelf APs, operating under a custom
made open source OpenWRT firmware [32]. The SCIFI con-
troller coordinates data acquisition from system logs, and
sets channel and transmission power for each AP in order to
minimize interference. SCIFI is used at UFF, UFOP (Ouro
Preto Federal University) and Brazilian Navy laboratories.

In this work, we used 28 APs spread over 5 floors of
the H building at UFF’s Engineering Campus. We chose the
H building because it is fully composed by classrooms and
follows a strict occupation schedule. We collected data from
6 months, between April and September 2018.

Each AP sends management and control events to the
SCIFI controller. Thus, we filtered log files to collect associ-
ation and disassociation or deauthentication events informa-
tion for the target APs. Association events mark the beginning
of an active connection between the AP and a user station,
while disassociation events mark its end. We observed that
disassociation events did not always appear in the log data,
however we also observed that whenever disassociation and

deauthentication of mobile stations message appeared in the
event logs, both occurred approximately in less than 1 second
difference between them. Hence, we used deauthentication
messages as the end of a connection between a mobile sta-
tion and an AP, when there was no registered disassociation
messages.

A. OCCUPANCY ANALYSIS
Figures 1 and 2 show the average SCIFI network behavior in
the H building from April to September 2018. It is possible
to observe the daily and weekly average occupancy. Figure 1
shows that APs are mostly idle between 0 and 6AM. It also
shows a slowly increasing occupation for time slots between
6 and 9AM. That slow build can be explained by the lecture
time schedules for the H building, which start at 7AM, but
most of them start at 9AM, and the last lectures end at 10PM.
Morning classes start at odd hours, and afternoon classes
at even times, with an hour interval between 1 and 2PM.
Figure 1 shows that AP’s occupation during university week-
days is higher than the occupation at holidays and weekends.
The occupation for holidays are slightly higher than those
for weekends. These results were unforeseen, but can be
explained by the H building usage during student vacations
for summer/winter courses and special activities.

FIGURE 1. Average day occupancy comparing working days, weekends
and holidays.

Figure 2 shows that the AP demand is higher during week-
days than during weekends. The average occupancy reaches
its highest on Tuesdays, Wednesdays and Thursdays. Whilst
smaller than the other weekdays, Saturday’s average demand
is relatively high when compared to Sunday. One explanation
can be that the building is used on some Saturdays for exams
and other special activities. For a classroom building such as
theH building, these results were expected. Even thoughmost
APs in the H building remain unoccupied for long periods
of time, we noticed that some APs remain with a residual
number of devices connected to it during closing hours. One
possible explanation is that theH building still has appliances,
such as computers, and university staff members, such as the
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FIGURE 2. Average week occupancy.

campus security, that are still present in the building during
off hours and days. That explains why we can not simply
assume that all APs are unused during those hours.

V. PROPOSED METHODOLOGY
Figure 3 shows a schema of our proposed unified method-
ology and its major steps, which are i) data acquisition and
dataset construction; ii) input configuration; iii) regression
and classification model configuration; iv) model selection.

The first step, shown in the upper part of the figure,
is to prepare four datasets to be used for the evaluation
of classification and regression prediction models. Then,
in the second step, we use several input feature configura-
tions, training set constructions and distinct single-label and
multi-label machine learning methods to build our classifiers
and regressors, in order to evaluate the significance of these
characteristics for prediction models.

In the third step, we build single and multi-label clas-
sifiers capable of predicting the occupancy states for net-
work APs and/or the construction of single and multi-label
regressors capable of predicting the occupancy count for
networkAPs. Formulti-label classification, we propose using
BR and CC problem transformation methods and Multilayer
Perceptron ANN to produce forecasts. For multi-label regres-
sion, we propose using BR and RC problem transformation
methods and Multilayer Perceptron ANN for multi-label to
produce those predictions.

Finally, in the last step shown in Figure 3, an evaluation
using multi-label and single-label metrics helps the selection
of a model that provides the best performance results and that
can be used in smart building energy-efficient systems for
several purposes.

Our methodology is validated throughout experimental
tests with UFF’s SCIFI network data. Our tests demon-
strate how it helps deciding the most suitable method to be
used for energy-efficient smart buildings. In our experiments,
dataset transformations, classification and regression model
construction andmeasurements were developed using Python
scikit-learn API [33] and Pandas [34].

A. DATASET CONSTRUCTION
We have filtered and processed event logs to select informa-
tion about the connection status between mobile stations and
APs. Our datasets follow the work of Sangogboye, Imamovic
and Kjærgaard [9] and Balaji et al [5]. We divided a day into
144 (10 minutes) time slots, and computed the number of
devices associated to an AP in each time slot by increasing the
number for each station association event and decreasing it
for each disassociation event. The datasets1 show occupancy
count and detection for each AP over a period of 6 months,
from April to September 2018.

In the single-label datasets, each instance has only one
output feature representing a specific date and time inter-
val occupation count. The single-label dataset contains the
following input features: Month, Day, Day of the Week,
Holiday, APid, Hour, Minute. The multi-label datasets have
each instance representing one specific date and 144 output
features representing the time intervals of a day occupation
count. The multi-label dataset contains the following input
features: Month, Day, Day of the Week, Holiday, APid.

Month and Day are numeric and show the instance date.
Day of the week is categorical and indicates one of the
7 week days. Holiday is boolean and indicates if the day
is a normal semester day with lectures (False) or a public
holiday or university vacation day (True). AP Identification
(APid) carries the access point identification number and it
informs to which specific AP the occupancy history belongs.
Hour and Minutes are also numerical and are only present in
the single-label datasets. The Hour input feature ranges from
0 to 23 representing day hours. The Minute feature ranges
from 0 to 50 in 10 minute steps. Although we could have
combined Hour and Minute features to create a time interval
feature ranging from 0 to 144, we decided to keep semantic
information given by the hour/minute tuple.

On occupancy detection datasets, we are only interested in
binary classification (whether the AP has someone associated
or not), so we applied a label binarization filter to our dataset
outputs, in order to transform each numeric occupation count
into a boolean output feature. To be classified as occupied
(value 1) for a 10 minute time interval, the AP needs to have
at least onemobile station associated to it. If nomobile station
tries to associate to that AP during the whole duration of that
time slot, the AP is considered unoccupied (value 0). The
single and multi-label occupancy detection datasets have the
same input features.

B. SINGLE-LABEL AND MULTI-LABEL CLASSIFICATION
ANALYSIS
We evaluated multiple types of classification model con-
structions, with varying training and testing sets. We trained
collective models where only one classifier was trained with
information regarding all APs and responsible for predicting
the occupancy detection of all APs.We also trained individual

1 The datasets are available at https://github.com/midiacom/UFF-SCIFI-
Datasets
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FIGURE 3. Our proposed methodology.

classification models where multiple classifiers were trained
only using information regarding one specific AP and respon-
sible for that AP occupancy detection prediction. We built
collective MLP ANN multi-label (ML) and single-label (SL)
classifiers for our tests. Our goal with these distinct single and
multi-label model construction was to evaluate if the occu-
pancy detection of one AP could benefit from information
from other APs, to determine if an AP individual information
is capable of giving satisfactory detection predictions and
which method has the best performance among those tested.

These collective and individual multi and single-label clas-
sifiers were also tested using multiple input feature configu-
rations. We decided to evaluate if Month and Day features
were significant to our model predictions. Month and Day
features give date information to the classification models,
which could benefit their predictions giving seasonal insights.
On the other hand, more features can also represent more
noise and increase the size of the classification data, which

can consequently turn into waste of space and insignificant
accuracy enhancement. Therefore, all classifiers were trained
with and without Month and Day features.

Our label features are used respecting the time interval
order for constructing the chain in the CCmethod. Therefore,
our feature chain goes in crescent order from T0 to T143. Our
time sequenced output features helped chain selection order
in CC, because finding label order can be challenging [29].
We used Decision Tree (DT), K-NN and Random Forest (RF)
machine learning algorithms for our SL classification mod-
els, as they present the best single-label Wi-Fi occupancy
detection results according to Fang et al [6]. Sangogboye,
Imamovic and Kjærgaard [9] also stated that these algorithms
were among the best algorithms in their MLmethod.We used
default parameters values for DT and RF and we used K = 5
for K-NN.

We also built ANN MLPs. Table 2 shows the MLP
hyper parameters selected for both SL and ML classification
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TABLE 2. MLP ANN parameter values.

models after a search over a list of possible values for hyper
parameters.We used the grid search algorithmGridSearchCV
present in scikit-learn API [33]. Other non-listed parameters
kept their default values.

To evaluate the performance of these models, we apply a
train/test split on our datasets. The order of the collected data
must be respected both for training and testing. So, dataset
instances from April to August were used for training, and
September dataset instances were used for testing the models.
We used 4 metrics to evaluate our classification models: Atj ,
Ptj , Rtj and F1tj , as well as their overall versions.

C. SINGLE-LABEL AND MULTI-LABEL REGRESSION
ANALYSIS
For occupancy count, we also tested multiple types of regres-
sion model construction, with various training and testing
sets. We trained collective and individual regressors using
distinct training sets. These collective and individual multi
and single-label regressors also were tested having several
input feature configurations. Consequently those multi-label
(ML) and single-label (SL) collective and individual regres-
sors were trained with and without the Month and Day
features. Those regression model constructions evaluate if
the occupancy count system could benefit from information
from other APs, determine if an AP individual information is
capable of giving satisfactory results and evaluate if Month
and Day features were significant for predictions.

The output label chain in RC methods is the same used
in CC. We used DT, K-NN, RF and the XG optimized
gradient boosting SL learning regression algorithms. Later
on, we decided to construct collective MLP ANN, support
vectormachine (SVM) and stochastic gradient descent (SGD)
SL and ML regressors. But since the occupancy count data
presents a high variance, these regressors had their input and
output data normalized. We also decided to test the K-NN
algorithm with normalized input and output data. The MLP
hyper parameters selected after an extensive search for both
SL and ML regression models are the ones shown in Table 2.
Analogously to the classifier evaluation, we also applied

a train/test split on our datasets. Dataset instances from
April to August were used for training, and September dataset
instances were used for testing the models. We used three
metrics to evaluate our regression models: RMSEtj , RMSPEtj
and MAPEtj , as well as their overall versions.

VI. EXPERIMENTAL ANALYSIS
This section shows the results of our experimental analysis.
We analyze which machine learning method, algorithm,
model construction type and input combinations are more
suitable to scenarios where Wi-Fi data can be used for smart
building systems.

A. CLASSIFIER ANALYSIS
In what follows, we show the experimental analysis for the
occupancy detection problem. The models were constructed
using a combination of four distinct parameters: the SL
method and 2 distinct ML (BR and CC) machine learning
methods; 2 distinct types of model construction, which can
be collective (Col) or individual (Ind); 2 distinct input con-
figurations, one composed by APid, holiday and weekday
features (APHDWD) and other by all features (ALL), includ-
ing AP Id, holiday, weekday, day and month features; and
3 distinct machine learning algorithms (RF, DT and K-NN)
for constructing both SL models and the base classifiers of
the ML methods. We also constructed 2 collective SL and
2 collective ML MLP ANNs, one using APHDWD features
and other using ALL features. These combinations result in
40 distinct models. In order to guide our analysis, we firstly
compare BR and CCMLmethods. Then, we compare the best
MLmethod against the SLmethod. We then evaluate types of
model construction, algorithms and inputs. Finally, we eval-
uate if there is any observable advantage of one combination
of parameters over the others.

1) MULTI-LABEL METHODS
We selected the best results from the 40 evaluated models.
Figure 4 depicts the accuracy Atj of the best machine learning
algorithm for each possible BR and CC ML classification
model parameter combinations. We can see that BR models
have better accuracy results than CC, as well as they drasti-
cally decrease from 6 to 8AM for both methods.

CC performance can be explained by the unpredictable
AP occupancy from 6 to 8AM as seen in Figure 1. As the
occupancy and idleness occurrence in those time slots are
very alike and the states occur almost randomly, it is harder
for classifiers to give a correct occupancy prediction for them,
which leads to worse accuracy. That accuracy loss introduces
a greater error on the label feature prediction and conse-
quently affects the rest of the chain since the next time slots
take the previous results into consideration. Because BR does
not take the previous prediction into account, those prediction
errors do not propagate.

Table 3 shows the overall metrics A, P, R and F1 for the
best assessed models. From Table 3, it is clear that the BR
method got better overall results than the CC method. Metric
evaluation also shows that models using only APHDWD as
input features present better results than using ALL features.
Thus, this result indicates that, for our data, seasonal infor-
mation is not a significant feature for ML classification mod-
els. Metric evaluation also shows that there is no significant
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FIGURE 4. Accuracy Atj for several BR and CC ML methods and parameter
configurations.

TABLE 3. Classification performance results for BR and CC ML methods.

difference between the types of model constructions (Col vs
Ind), which indicates that both collective and individual mod-
els are equally valid model construction types for occupancy
detection.

2) MULTI-LABEL AND SINGLE-LABEL EVALUATION
From the multiple combinations of parameters for construct-
ing the SL and ML models, we chose at least one of the
best results of 8 combinations for a deeper analysis. Figure 5
shows the Atj accuracy of these 8 models, where we can
notice that there is no significant difference between the ML
and SL correspondent models. For instance, the Atj curve
of models Col/DT/BR/ADHDWD, Col/DT/SL/ADHDWD,

FIGURE 5. Accuracy Atj of ML and SL methods for several parameter
configurations.

Ind/RF/BR/ADHDWD and Ind/DT/SL/ADHDWD are quite
similar. Also, we could observe that models using only
APHDWD features had better results than models using all
features (ALL).

Table 4 shows the overall metrics A, P, R and F1 for
the best ML and SL models. It also shows the results for
MLP ANN models. Table 4 demonstrates that the seasonal
information do not improve the model predictions. Models
using only the APHDWD features had better overall results,
which suggest that day and month features carry no sig-
nificant information about our occupancy data. Our results
and the results in [10] comprise the same seasons and yet
they showed distinct conclusions about seasonal information.
Results reported in [10] showed that seasonal information
carries relevant information about the occupancy data. One
explanation for that difference can be the low influence of
tropical climate at latitude -22.9, where UFF is located.

Table 4 shows that there is no significant difference
between ML and SL methods. From Table 4, we can also
notice that there is no significant difference between col-
lective and individual models. These conclusions make both
machine learning methods and both model construction types
equally valid. It is also possible to observe from Table 4
that DT and RF algorithms were the most suited for the
occupancy detection problem. Finally Table 4 shows that the
MLMLP ANN fails to have comparable results, however the
Col/MLP/SL/APHDWD ANN got comparable results to the
Col/DT/SL/APHDWD model.

We found that DT and RF machine learning algorithms
were the most suited for occupancy detection. Since there
was no noticeable difference on the evaluation metrics for
ML and SL individual and collective models using the RF
and DT algorithms, we decided to evaluate their model sizes
in order to compare them. Smaller models are not only
simpler to understand, but they also require less memory
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TABLE 4. Classification performance results for BR ML and SL methods.

space to be stored and are also faster to traverse, which
leads to a faster result and smaller CPU requirements to run
them. Table 5 shows the mean number of leaves (Numb.
of Leaves), depth and their respective standard deviation
(Std. Dev.) for all model possible combinations using only
APHDWD input features. In this table, we can observe that
SLmodels have a smaller size when compared toMLmodels.
This was expected because the ML BR method consists of a
group of individual SL models, each for one specific label.
The second conclusion is that DT algorithms are significantly
smaller when compared to RF algorithms. This result was
also expected since random forests are a collection of decision
trees. Finally, we can notice that collective models are larger
than individual models. Since individual models train over

TABLE 5. DT and RF classifier’s mean number of leaves and depth size
evaluation.

a smaller part of the dataset they also present smaller sizes.
SL and DT algorithms form the best combination to be used
in scenarios using our data, because they are simpler and
smaller. However, the same cannot be said about individual
models over collective models. Individual models are smaller
but they only give information about one AP. Depending on
the scenario characteristics, the collective model can actually
be a better option, such as in our motivation scenario where
a central unit is responsible for the management of the whole
AP network.

B. REGRESSION ANALYSIS
This section shows the experimental analysis for the occu-
pancy count problem.We evaluated several regressionmodels
using SL and ML machine learning methods. 48 models
were built using a combination of four distinct parameters:
the SL method and 2 distinct ML (BR and RC) methods;
2 distinct types of model construction, which can be col-
lective (Col) or individual (Ind); 2 distinct input configura-
tions, one composed by APHDWD features and other by all
features (ALL); and 4 distinct machine learning algorithms
(RF, DT, K-NN, XG) for constructing both SL models and
the base classifiers of the ML methods. We also constructed
2 collective SL MLP ANNs and 2 collective ML MLP
ANNs, using APHDWD features and using ALL features.
Additionally, we constructed 12 more collective regression
models using a combination of three distinct parameters: 3
distinct machine learning algorithms (SVM, SGD, K-NN); 2
distinct normalized input configurations, one composed by
APHDWD normalized features and other by all normalized
features (ALL); and 2 machine learning methods (SL and
BR). These combinations result in 64 distinct models.

We firstly evaluate BR and RC ML methods. Then,
we compare the best ML method against SL methods.
We evaluate which model construction type, algorithms and
inputs give the best results. Lastly, we evaluate if there is any
observable advantage of one method over the others.

1) MULTI-LABEL METHODS
As we tested 64 distinct models, the results shown here are
the compilation of the best results found. Figure 6 shows the
RMSEtj of the best machine learning algorithm for each pos-
sible BR and RC ML regression model parameter combina-
tions. Figure 6 shows that the BR method models have lower
RMSEtj values than the RCmodels and that theRMSEtj results
start to significantly increase after 6AM for both methods.

Another interesting observation when comparing Figures 6
and 1 is that RMSEtj increasing behavior is very similar to the
occupancy behavior. This means that heavily occupied hours
have higher RMSEtj errors. Therefore, RMSEtj is a numerical
error metric that alone cannot be enough to evaluate how good
the occupancy count predictions are for each time slot indi-
vidually. Figure 7 shows RMSPEtj. We can observe that the
BR method got better results than the RC method. BR better
performance over RC can be explained by the same reasons
we have discussed in Section VI-A1.
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FIGURE 6. RMSEtj for several BR and CC ML methods and parameter
configurations.

FIGURE 7. RMSPEtj for several BR and CC ML methods and parameter
configurations.

Comparing Figures 6 and 7, we can also notice that, even
though the RMSEtj values are higher for predictions after
9AM, their RMSPEtj values are smaller. Even though the
absolute occupancy count error of these time intervals are
higher, they are comparatively smaller than the data variance
and therefore we can conclude that model predictions are
acceptable. The RMSPEtj values presented before 9AM are
relatively higher, being almost equal or superior to the vari-
ance itself. This happens because these hours real occupancy
is low and presents a small variance. Therefore for late-night
and early-morning hours, RMSEtj values are comparatively
higher than the data variance. However since these hours
correspond mostly to closing hours, we can not say that an
occupancy count model would not be applicable. Even if

we might being doubling the occupancy count values due
to prediction errors, the total occupancy count would still be
low. So, depending on the scenario and systems, these errors
can be easily overcome.

Table 6 shows the overall metrics RMSE , RMSPE and
MAPE for the best models. Metric evaluation for the regres-
sion problem shows that models using only APHDWD input
features had better results than the models that used ALL
features, which indicates that seasonal information is also
not a significant feature for ML regression models. Metric
evaluation also shows that there is no significant difference
between the model construction types, indicating that both
models are equally valid for occupancy count prediction.

TABLE 6. Regression performance results for BR and RC ML methods.

2) MULTI-LABEL AND SINGLE-LABEL EVALUATION
Figure 8 comparesRMSPEtj among the best machine learning
algorithms for ML and SL regression model construction
combinations. It shows that there is no significant difference
between ML and SL correspondent models. However it is
possible to notice that models using only the APHDWD
features had better results than the models that used ALL
features.

Table 7 shows the overall metrics RMSE , RMSPE and
MAPE for the best assessed models. It also shows the results
for the MLP ANN models. Table 7 shows that regression
models using only the APHDWD features had better overall
results, which suggest that day and month features carry
no significant information about our occupancy data for
the regression problem too. Table 7 overall metric evalua-
tion shows that there is no significant difference between
ML and SL methods and that there is no significant differ-
ence between collective and individual models, which make
both machine learning methods and both model construction
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FIGURE 8. RMSPEtj of ML and SL methods for several parameter
configurations.

TABLE 7. Regression performance results for BR ML and SL methods.

equally possible considering performance. It is also possi-
ble to observe in Table 7 that DT and RF algorithms were
the best machine learning algorithms for occupancy count
prediction. Table 7 shows that MLP ANN fails to have
comparable results. However it is worth mentioning that the
Ind/XG/BR/APHDWD model got comparable results to the
DT collective SL model using APHDWD features.

DT and RF machine learning algorithms had better results
for occupancy count than the others. Since there was no
noticeable difference on the evaluation metrics for ML and
SL individual and collective models using these algorithms
we also decided to evaluate their model sizes. The model size
impacts on memory space and CPU requirements. Table 8
shows the mean number of leaves (Numb. of Leaves), depth
and the standard deviation (Std. Dev.) for all model combi-
nations using APHDWD features. This table shows that SL
models are smaller when compared to ML models and that
the DT algorithm is significantly smaller when compared to
the RF algorithm. We can also notice that collective models
are bigger than individual models. The reason why these
results are expected are the same ones we have discussed
in Section VI-A2. SL method and DT algorithm are a better
combination to be used in our scenario once they are sim-
pler and smaller than ML methods and the RF algorithm.
However, the same cannot be said about individual
models over collective models. As we have discussed in
Section VI-A2, the collective model can actually be a better
option depending on the scenario characteristics.

TABLE 8. DT and RF regressor’s mean number of leaves and depth size
evaluation.

VII. FURTHER DISCUSSION ON OUR METHODOLOGY
AND RESULTS
While other authors have analyzed how multiple machine
learning algorithms may change the model prediction results,
all studies we have seen in literature did that using only a
specificML or SL method with a specific model construction
type and input configuration. Therefore, they were able to
evaluate whichmachine learning algorithm they should chose
for their model. However, our experimental analysis showed
that the model construction type, machine learning method
and input configuration shall also be taken into consider-
ation depending on the scenario. As we have seen in our
experimental analysis, our proposed methodology allowed
us to draw numerous conclusions about the types of model
constructions, input configurations, machine learning meth-
ods and algorithms and helped on the decision of a best
combination choice for our experimental scenario.

However, this analysis also shows that not always the best
combination will remain the same for all possible scenarios.
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In this section we discuss how distinct scenarios may affect
the model best combination choice.

We also present an analysis of potential energy-saving
results where our model would be used to develop an
energy-efficient management system that controls the power
state of AP wireless interfaces.

A. SEASONAL INFORMATION
In our scenario, where we usedWi-Fi association information
to build a wireless network energy efficient management
system without real time data acquisition, month and day
input features should not be used once these features showed
no enhancement on the prediction model results. On the other
hand, although data used in [9] and [10] present the same
seasons of our experimental analysis, they showed seasonal
information as a relevant input feature. Those studies were
made in northern hemisphere countries in temperate regions,
such as the ones found in Europe and North America, while
our data were collected in a tropical country in South Amer-
ica. Therefore, we can conclude that seasonal information
must be analyzed in these types of systems since is not
always significant and depending on your building’s location
it should or should not be used as an input.

B. INDIVIDUAL AND COLLECTIVE COMPARISON
Another important question to answer is which type of
model construction, individual or collective, should be used.
Individual and collective models can have distinct results
as they are trained with distinct dataset information. Our
experimental analysis showed that there was no difference
between the individual and collective models except for their
sizes, where individual models were much smaller than the
collective ones. However, it is not always true that infor-
mation regarding various sensors can benefit other sensor’s
predictions. Also, further examination based on the scenario
is required sincemodel sizes can be relative. In ourmotivation
scenario, for example, individual models would be actually
bigger, once the collection of individual models stored at the
central unit would be bigger than one single collective model
capable of giving predictions for all APs. In scenarios where
each individual model is deployed in its respective sensor or
actuator, they would be smaller than the collective model.

C. ENERGY-SAVING ANALYSIS
Fromour scenario, it is possible to develop an energy-efficient
management system that controls the power state of AP
wireless interfaces. The developed system would use the ML
model predictions to detect unoccupied APs and turn off their
wireless interfaces for unoccupied periods.

We can estimate the energy saving factor of our proposed
scenario using Eq. 10, presented in [35], where: Pext_on and
Pext_off represent an AP external power source measured
power in Watts (W) for cases where the wireless network
interface is switched on and off respectively; and ton and ttotal
represent the period of time that the APs stayed with their
wireless interface switched on and total period of time that is

taken into analysis respectively.

F =
Pext_on − Pext_off

Pext_on
(1−

ton
ttotal

) (10)

The result given by Eq. 10 gives the percentage of energy
that can be saved from the total energy used, by switching
off the AP wireless interfaces during idle time slots. Through
the formula and the classifier results, it is feasible to estimate
the power saving factor for the baseline proposed scenario
for the month of September 2018, as follows.

From our experimental analysis using the proposed unified
methodology, we selected the Col/DT/SL/APHDWD as our
prediction model. Using the selected prediction model, it is
possible to determine that the H building APs would stay
unoccupied during 43.20% of the time for the month of
September.

Through practical experiments, we measured that the con-
sumed power values for our AP model wireless interface
switched on and off states are 1,111W and 0,845W respec-
tively. Therefore we could have saved 10.34% of the total
energy consumption, if we used a mechanism as proposed
in this paper for the SCIFI network in the H building during
September 2018.

However, it is important to mention that the results
achieved with this analysis are merely a baseline estimation.
The mechanism proposed for this evaluation scenario is sim-
ple and does not take several aspects of the Wi-Fi network
into consideration as others do [5], [6], [15], [16], [23], [24].
Even though, it is fair enough to assume that it gives a good
baseline estimation of how much energy could have been
saved using such principles with more complex and complete
mechanisms, which we are going to address as future work.

VIII. CONCLUSION
In this paper, we presented a unified experimental method-
ology to evaluate and compare classification and regression
models on their capacity to accurately predict access point
demands for smart building scenarios. We conducted an
experimental analysis using our proposed methodology and
data collected from the UFF’s SCIFI network APs, belonging
to a classroom building, over a period of 6 months, from
April to September 2018.

Our results show that the Col/DT/SL/APHDMLmodel not
only achieved the best A accuracy results for the classification
problem (with an A of 86.69%) but also achieved the best
RMSPE results for the regression problem (with an RMPSE
value of 0.29). It is also worth to notice that the mechanism
proposed in this workwould have saved around 10.34% of the
total energy used by the SCIFI wireless network for the whole
month of September 2018. Our experimental analysis showed
that the proposed methodology could broadly and extensively
evaluate the machine learning (ML) models. It also showed
that other model parameters besides ML algorithms need to
be taken into consideration when deciding the best MLmodel
prediction to be used for smart buildingmanagement systems.
During our experimental analysis, we also concluded that the
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smart building scenario is a crucial determinant to evaluate
which model parameters to choose and that, depending on
the scenario, those choices might change.

Future work involves the development of a smart
energy-saving mechanism for large-scale wireless networks
that uses classification and regression models. Those models
will use the results obtained in our experimental analysis to
understand both idleness and demands of UFF’s SCIFI access
points. That energy-saving mechanism will operate in the
SCIFI controller without requiring real-time data acquisition
or high CPU power.
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